Voraussetzung für ein Master-Data-Management ist die Bereitschaft zur "Data Governance". Was das bedeutet, verdeutlichte Nicola Askham, die sich selbst als "Data Governance Coach" bezeichnet, auf der ersten europäischen Anwenderkonferenz des dänischen MDM-Softwareanbieters Stibo Systems. "Data Governance heißt, Ihre Daten proaktiv so zu managen, dass sie Ihr Geschäft unterstützen."
Das bedeute keineswegs, dass Daten auf der Mikroebene jede Minute unter Kontrolle sein müssten. Eigentlich gehe es gar nicht um die Daten selbst, sondern darum, wie sie vom Business verwendet werden. Das Maß der Kontrolle hänge von der beabsichtigten Nutzung ab. Askham hat neun typische Fehler bei der Data Governance identifiziert.
Fehler 1: Die Initiative ist von der IT geführt
Das Business neigt dazu, mit der Infrastruktur auch das Datenthema an die IT zu delegieren. Aber die Daten gehören den Fachbereichen. Wo das nicht verstanden wird, ist das Business auch nicht engagiert. Die IT wird sich auf die technische Seite konzentrieren, also auf das Bereinigen der bereits abgespeicherten Daten. Damit die Initiative Erfolg hat, müssen die Daten aber schon dort gemanagt werden, wo sie entstehen.
Fehler 2: Der Reifegrad des Unternehmens bleibt unberücksichtigt
Einige Organisationen sind einfach noch nicht reif für eine Data Governance. Die Beteiligten sehen die Notwendigkeit nicht ein und werden deshalb nicht mitmachen. Das lässt sich nur umgehen, indem man das Unternehmen einem Reifetest unterzieht. Dazu braucht man nicht gleich die Hilfe einer großen Unternehmensberatung; es gibt im Netz eine Reihe von frei verfügbaren, oft billigen Tools, sagt Askham. Ganz wichtig: Definieren Sie zunächst, warum Sie Data Governance brauchen und wollen. Setzen Sie diese Begründung in Beziehung zur Unternehmensstrategie: Was ist das Ziel der Unternehmung? Und wo kann Data Governance helfen, dieses Ziel zu erreichen?
Fehler 3: Data Governance als Projekt sehen
Ein Projekt ist etwas, das einen Anfang und ein Ende hat. Nicht alle sind gleichermaßen involviert, manche versuchen, es einfach auszusitzen. Geht es um Data Governance, ist allenfalls die Implementierung ein Projekt. Die Sache selbst ist etwas Andauerndes, etwas, das die Kultur eines Unternehmens verändert. Deshalb sollte die Initiative lieber als "Change"-Programm mit unterschiedlichen Stoßrichtungen ("Work Streams") definiert werden.
Fehler 4: Die Verbindung zur Strategie fehlt
Wenn es Ihnen nicht gelingt, den Stakeholdern im Unternehmen klarzumachen, wie Data Governance die Unternehmensstrategie unterstützt, werden Sie keine Mehrheiten dafür finden! Die Initiative scheitert, weil die Leute nur den Aufwand, aber nicht den Nutzen sehen. Gehen Sie die "Schmerzpunkte" des Business an! Visieren Sie für jeden Unternehmensbereich ein individuelles Ziel an und arbeiten Sie mit einer klaren Roadmap. Aber stellen Sie sich auf ein Langstreckenrennen ein.
Fehler 5: Datenlandkarte ist unverstanden
Mit alten Datenbeständen hat jedes Unternehmen ein Problem, sogar wenn es erst ein paar Jahre im Geschäft ist. Dabei bezeichnet "Legacy Data" nur einen der Stolpersteine, die den Weg zu sauberen Stammdaten so beschwerlich machen. Generell ist es wichtig, die Beziehungen zwischen Daten und Systemen zu verstehen, damit die Konsistenz auch dann gewahrt bleibt, wenn sich die Daten verändern. Erstellen Sie auf jeden Fall eine "Datenlandkarte". Nutzen Sie dafür ein konzeptionelles Datenmodell und beginnen Sie auf der höchstmöglichen Abstraktionsebene, um sich dann hinunterzuarbeiten.
Fehler 6: Das Data-Governance-Framework ist nicht ins Tagesgeschäft integriert
Die Implementierung des Date-Governance-Frameworks ist der kritischste Teil der Mission. Die Antwort auf diese Herausforderung heißt: Rollen und Verantwortlichkeiten festlegen. Verantwortliche sollten die Implementierung explizit den Menschen anvertrauen, die verstanden haben, dass sie später auch den Nutzen davon haben werden. Es geht darum, Prozesse zu etablieren, mit deren Hilfe sich diese Aufgabe bewältigen lässt.
Fehler 7: Big Bang scheitert meistens
Data-Governance-Initiativen sind durchaus furchteinflößend und ressourcenintensiv. Um im Unternehmen eine breite Unterstützung zu bekommen, ist ein strukturierter Phasenansatz einem "Big Bang" vorzuziehen. Gehen Sie Schritt für Schritt vor und kommunizieren Sie auf jeder Stufe, was Sie gerade tun.
Fehler 8: Data Governance gilt als notwendiges Compliance-Übel
Wird das Thema nur angefasst, weil regulatorische Pflichten es fordern, wird nicht viel dabei herauskommen. Meist versuchen die Unternehmen dann, nur das absolut Notwendige zu tun. Damit verpassen sie nicht nur die historische Chance eines Kulturwandels, sondern entdecken am Ende oft, dass der Aufwand geringer gewesen wäre, wenn man gleich richtig vorgegangen wäre. Betrachten Sie die regulatorischen Bestimmungen nicht als lästige Pflicht, sondern als Triebfeder für Ihre Initiative. Und konzentrieren Sie sich nicht allein darauf, gesetzlichen Anforderungen zu genügen, sondern orientieren Sie sich von Anfang an auch am Business-Nutzen.
Fehler 9: Ein Tool soll alle Probleme lösen
Wie Askham feststellt, gibt es heute etliche Softwarewerkzeuge am Markt, die bei der Data Governance hilfreich sein können. Doch es gibt kein Tool, das die Antwort auf alle Fragen geben könnte. Software wird dem Business nicht die Arbeit abnehmen - dieser Irrglaube darf sich gar nicht erst verbreiten. Kreisen aber alle Initiativen ständig nur um ein Tool, erhält er immer wieder neue Nahrung. Außerdem wächst damit die Gefahr, dass das Thema zu stark in die IT-Ecke gedrängt wird. Also überlegen Sie erst, was Sie wirklich wollen, bevor Sie ein Tool einführen. Und seien Sie sich darüber im Klaren, was das Tool beizutragen vermag und wo es hilfreich ist - beziehungsweise wo nicht.