Schutz und Organisation von Daten

Der richtige Weg zur Data Governance

18.07.2022 von Holger Fleck
Ein gutes Daten- und Informations-Management ist für Unternehmen eine wichtige Voraussetzung, um im Zusammenhang mit Big Data langfristig Kontrolle über ihre Daten zu behalten.
Data Governance sorgt für einen geordneten Umgang mit Daten im Unternehmen, um ihre Qualität und Integrität zu erhalten oder anstehende Transformationen effizient durchführen zu können.
Foto: Lightspring - shutterstock.com

In Unternehmen hat Datenverarbeitung eine immer größere Bedeutung. Dabei nimmt die Menge der gespeicherten Daten stetig zu. Mit fortschreitender Automatisierung und Digitalisierung werden diese Daten mit einer wachsenden Anzahl von Systemen und Teilnehmern ausgetauscht. Aus diesem Grund ist ein geordneter Umgang mit Daten im Unternehmen wichtig, um ihre Qualität und Integrität zu erhalten oder anstehende Transformationen - ob nun fachlich oder technisch - effizient durchführen zu können. Eine richtige und individuell abgestimmte Data Governance erleichtert Unternehmen den Umgang mit der wachsenden Datenflut. Sie führt zu mehr Effizienz und Transparenz.

Data Governance - eine Definition

Data Governance definiert Regeln und Prozesse, wie Entscheidungen, die sich auf Daten beziehen, getroffen werden. Die Data-Governance-Strategie ist die Vision, die hinter der Data Governance steht. Sie legt den unternehmensweiten Ansatz für die Organisation und insbesondere den Schutz von Daten fest. Ein Data-Governance-Plan dokumentiert die Regeln und Prozesse für das gesamte Unternehmen. Darin wird die Konzeption von Projekten in Bezug auf den Umgang mit Daten organisiert sowie Standards für deren Verarbeitung definiert. Dabei stehen folgende Ziele im Vordergrund:

Neben den harten Zielen, bietet eine Data Governance auch weitere weiche Vorteile:

Lesetipp: DataOps - Datenmanagement geht auch agil

Der Weg zu einer Data Governance

Data Governance gibt es leider nicht von der Stange. Es gilt, sie individuell für das jeweilige Unternehmen zu entwickeln. Allerdings muss hierbei nicht alles neu erfunden werden. Das Know-how beim Umgang mit Daten im Unternehmen ist in aller Regel bereits vorhanden. Die Herausforderung besteht darin, die richtigen Prozesse unter Beteiligung der relevanten Mitarbeiter zu finden.

Data Governance ist kein abgeschlossenes Projekt, sondern ein kontinuierlicher Prozess.
Foto: Axians

Der erste Schritt besteht darin eine Strategie für die Data Governance zu entwickeln. Hierfür wird zunächst eine Vision ermittelt. Aus dieser Vision leiten sich dann die Ziele ab, die durch die Data-Governance-Strategie erreicht werden sollen. Die Strategie wird anschließend in dem Data-Governance-Plan konkretisiert. Dieser Plan dokumentiert, wie Entscheidungen bei der Verarbeitung von Daten getroffen werden. Weiterhin werden auch die Prinzipien zum Datenschutz und der Datensicherheit festgehalten.

Sowohl die Organisation der Entscheidungen als auch die Datenschutz- und Datensicherheits-Prinzipien sind jedoch nicht für alle Daten gleich. Daher ist es zunächst sinnvoll, Gruppen von Daten mit gleichen Anforderungen zu finden. Die Regeln des Data-Governance-Plans können dann für jede Datengruppe separat definiert werden.

Data Governance ist keine Einbahnstraße. Wie bei allen langfristig wirkenden Strategien sollte auch Data Governance als kontinuierlicher Prozess umgesetzt werden. Immer wieder müssen die Ergebnisse mit den Zielen verglichen werden, um die Maßnahmen und gegebenenfalls auch die Ziele zu korrigieren. Bei der Data Governance werden hierbei bereits in der Strategie möglichst messbare Metriken definiert.

Grundfragen für die Data-Governance-Strategie

Bei der Entwicklung der Data-Governance-Strategie sollten die folgenden Fragen betrachtet werden:

Jede dieser Fragen beinhaltet eine Abwägung: bei der ersten Frage besteht die Abwägung zwischen Freiheitsgrad und Selbstverantwortung der Mitarbeiter gegenüber Nachvollziehbarkeit und Konsistenz der Entscheidungen. Die übrigen Fragen beinhalten eine Abwägung zwischen einem funktionalen Vorteil und dem Aufwand.

Um eine fortlaufende Optimierung der Data Governance sicherzustellen, sind Metriken eine wirkungsvolle Methode. Hier ein paar Beispiele möglicher Metriken:

Lesetipp: Was ist ein Data Warehouse?

Auch wenn Metriken bei Data Governance nicht einfach zu erheben sind, sollte der Aufwand unternommen werden. Während die Datenqualität über Regeln und Stichproben noch zielgerichtet und mit definierter Genauigkeit erhoben werden kann, lassen sich Werte über Abweichungen von Projekten zumeist über Abfragen in Arbeitsmeetings oder anonymen Mitarbeiterumfragen ermitteln.