Der Versandhandel ist aktuell gekennzeichnet von einer steigenden Komplexität im Hinblick auf Angebotsvielfalt, zunehmende Online-Anteiligkeit oder auch unbekannte Wechselwirkungen zwischen den einzelnen Vertriebskanälen. Mit herkömmlichen Prognoseverfahren lässt sich das Geschäft in seiner Komplexität daher zukünftig nicht mehr ausreichend präzise prognostizieren. Der Einsatz der Neuro-Bayes-Technologie birgt in diesem Zusammenhang großes wirtschaftliches Potenzial.
Sie soll der Otto Group ermöglichen, durch genauere Artikel-Absatz-Prognosen einerseits die Verfügbarkeit der nachgefragten Ware und damit die Lieferbereitschaft zu optimieren und andererseits Überhangvolumina zu vermeiden. Beide Faktoren sind unmittelbar ergebniswirksam.
Erste Tests ergaben eine Verbesserung der Prognosegüte im Katalog-Bereich um 20 bis 30 Prozent, im Online-Bereich um rund 50 Prozent. Grundlage aller Prognosen mithilfe der Neuro-Bayes-Technologie ist die Eingabe von Einkaufsdaten wie beispielsweise Artikelbeschreibung, Angebotsträger, Versandtermin, Farbe, Größe, Seitenanteil im Katalog oder Marke. Das künstliche neuronale Netz findet Zusammenhänge zwischen den einzelnen Input-Daten und nutzt diese als Basis zur Berechnung der Artikel-Absatz-Prognose.
Lernfähiges System
Zum Einsatz kommt ein lernfähiges künstliches System, das durch methodische Bearbeitung der Datensätze bekannte und vor allem auch bisher unbekannte Wechselwirkungen erkennt. Die Treffgenauigkeit der Prognose wächst mit jeder Anwendung, da das künstliche neuronale Netz ständig lernt beziehungsweise trainiert wird.
Die Otto Group bringt in das Joint Venture neben der Projektsteuerung, Testkonzeption, Ergebnis-Evaluierung und Kommunikation auch die Bereitstellung von Expertenwissen und die Identifikation ergebniswirksamer Prognoseeffekte ein. Die Physiker von Phi-T übernehmen die Modell-Entwicklung, Prognoseerstellung, Optimierung und technische Umsetzung des Projekts. Die neuen Prognoseverfahren können und sollen die Arbeit der Waren-Disponenten nicht ersetzen, sondern ihnen vielmehr als zusätzliches Werkzeug bei der Entscheidungsfindung dienen.
Aktuell läuft der Roll-Out zunächst einmal für sämtliche Textilbereiche der Einzelgesellschaft Otto. Die Umsetzung in den Bereichen "Einrichten" und "Technik" soll folgen. Neben der Optimierung von Artikel-Absatz-Prognosen werden im Gemeinschaftsunternehmen auch weitere Einsatzfelder für Prognoseverfahren auf Basis künstlicher neuronaler Netze erarbeitet. Denkbar sind Prognosen zum Kundenkaufverhalten, zur optimalen Katalogausstattung für individuelle Kunden, zur Wechselwirkung zwischen Katalog und Internet oder auch Prognosen von Auftragseingängen und Kundenbonität usw.
Dafür wird Phi-T products & services in den kommenden Monaten konkrete Testansätze entwickeln. Langfristig ist die Ausdehnung auf weitere Unternehmen der Otto Group, auch im Bereich der Finanzdienstleistungen, vorgesehen. Entsprechende Tests sind für den Herbst 2008 geplant, der Roll-Out soll 2009 erfolgen.