Data analytics: Are we there yet
The great thing about GPS is that it lets us get from wherever we are to wherever we want to go. Not only that, but it also has access to data that lets it figure out exactly where we are in the first place! Let's face it, if we don't know where we're starting, it's very hard to figure out how to get where we want to go. This, of course, is exactly why in the corporate talent management setting any non-trivial organizational change is so difficult: even if we know where we want to go, that is, what the organization should look like, rarely do we actually know where we're starting. I realize that seems a bit counterintuitive: we can see the business, we can talk to the people. Unfortunately, in the context of our GPS analogy, that's a little like saying that we can look out the window and see trees or a street: that's great, but what does that tell us about where we are Without a larger context, the information we do have is of limited value. So what to do
Fortunately, this is an area where big data can be helpful. It's important to remember that however you define "big data," it is not about the data; it's about the insights that data analytics provide in supporting data-driven decision-making. Data analytics can give us a snapshot of what is actually going on: it can tell us where we are starting. Granted, it still takes someone with knowledge of organizational behavior and psychology to turn that data into a road map, but it's still a lot better than guesswork. For example, consider the chart shown in Figure 1. It's a simple age distribution in a manufacturing company, produced using a data analytics engine developed by Macromicro. But what it tells us is that this manufacturer has a leadership vacuum waiting to happen: note the bulge of younger, hence newer, employees, and the second bulge of considerably older employees. Note also how thin it is in between. It doesn't take Mr. Spock from Star Trek to figure out that most of the company leadership and experience is in the older group. At some point, those older employees will be retiring. Who is going to be running the show at that point
OK, we're done, right We can all see the data and now we know what to do: train people. Well, not so fast. Being able to see this information is both the blessing and the curse of data analytics. Just because we can figure out what our data means and see what to do about it does not mean that we know what to do about it. By way of analogy, getting an IQ test might tell you something about how smart you are, or at least give you a number, but it doesn't tell you anything specific about your educational needs: even knowing that you need a more challenging curriculum is not a very precise formula. It takes expertise to turn those IQ scores into specific educational plans. Similarly, knowing that this leadership vacuum will eventually exist doesn't give us the knowledge of who to develop or how to do it. The analytic engine gives us the facts we need, the trained human brain enables us to turn those facts into useful information and purpose.
I know, this is disappointing: no actual GPS for organizational change or growth that enables us to mindlessly make each turn. Unlike the landscape, organizations are never static. Data analytics can give us the information we need to successfully navigate that ever-changing organizational landscape, but it is not a destination -- data analytics is a journey.
Stephen Balzac is an expert on leadership and organizational development. A consultant, author and professional speaker, he is president of 7 Steps Ahead, an organizational development firm focused on helping businesses get unstuck. Steve is the author of The McGraw-Hill 36-Hour Course in Organizational Development and Organizational Psychology for Managers. He is also a contributing author to Volume 1 of Ethics and Game Design: Teaching Values Through Play. For more information, or to sign up for Steve's monthly newsletter, visit 7stepsahead.com. You can also contact Steve at 978-298-5189 or steve@7stepsahead.com.