Vier Anforderungen
Wie Data Scientists arbeiten
- Die Welt eines Data Scientist ist vielen Informatikern und Betriebswirten noch vollkommen fremd
- Data Scientists wünschen sich ein Team, in dem Vertreter des Business mit ihnen zusammen Hypothesen und Annahmen entwickeln
- Data Scientists brauchen den Zugriff auf Rohdaten, weil sie experimentell arbeiten
Mit der Erkenntnis von Daten als wichtigstem Rohstoff entstand das Berufsbild des Data Scientists. Bevor Unternehmen einen solchen suchen, plädiert der US-Marktforscher Forrester für eine Begriffsklärung. Die Analysten grenzen den Begriff insbesondere gegen Enterprise-Architekten und Data-Engineers ab. In dem Papier "The four things Data Scientists wish you knew" führen sie das aus.
Die Studie basiert nicht auf einer quantitativen Befragung. Forrester hat mit zehn Data-Science-Leadern gesprochen und weitere zehn Unternehmen befragt, die Advanced Analytics anwenden. Einer der Gesprächspartner war Andrew Jennings, Chief Analytics Officer beim Analytics-Software-Unternehmen FICO. Er sagte, die Welt eines Data Scientist sei sowohl den meisten Informatikern als auch den meisten Betriebswirten vollkommen fremd.
Für Forrester sollen Data Engineers und Enterprise-Architekten vor allem Ordnung und Struktur in die Datenflut bringen. Bei Data Scientists geht es dagegen um den Prozess des Erforschens der Daten an sich. Das Explorative sei wichtiger als der Algorithmus, so Forrester.
4 Merkmale der Arbeitsweise von Data Scientists
Forrester sieht die Arbeit der Data Scientists durch vier Prinzipien geprägt. Sie lauten:
1. Data Scientists müssen mit Data-Engineers und dem Business ein Team bilden. Die befragten Data Scientists beklagten sich bei Forrester über zu hohe Erwartungen durch das Business. Man werfe ihnen irgendwelche Schlagworte hin und erwarte, dass sie aus Daten generierte Erkenntnisse anbrächten.
Das funktioniere nicht, so die Befragten weiter. Sie wünschen sich ein Team: Vertreter des Business leiten Data Scientists an, die dann Hypothesen und Annahmen entwickeln. Data Engineers unterstützen diesen Prozess, das Stichwort lautet hier DevOps. Das Kunstwort aus Development und Operations soll die Lücke zwischen dem explorativen Prozess und dem strukturgebenden schließen.
2. Data Scientists nehmen gerne Rohdaten. Unternehmens-Architekten meinen es ja nur gut, wenn sie Daten gesäubert, geordnet und strukturiert präsentieren, weiß Forrester. Aber Data Scientists brauchen den Zugriff auf Rohdaten, weil sie experimentell arbeiten.
3. Der Prozess an sich kann Erfolge erzielen. Die Erfolgskontrolle gestaltet sich bei Predictive Analytics sehr schwierig. Finanzielle Benefits lassen sich schwer bemessen. Unternehmen müssen verstehen, dass Data Scientists möglicherweise "zufällig" auf wichtige Zusammenhänge stoßen oder über Umwege an interessante Ergebnisse kommen. In jedem Fall gewinnen sie Erkenntnisse über unternehmensinterne Prozesse.
4. Geschwindigkeit ist wichtig. Frameworks wie Hadoop unterstützen Data Scientists. Denn ihre Arbeit ist iterativ und generiert immer mehr Daten. Je schneller die IT Daten managen kann, umso besser.
Forrester geht davon aus, dass viele Unternehmen bereits Data Scientists suchen oder in Kürze mit der Suche starten werden. Die gewünschten Skills kreisen um Large-Scale Predictive Modeling, Data Mining, Advanced Analytics und Big DataBig Data. Alles zu Big Data auf CIO.de
- Die Aufgaben des Business Developer
Business Developer blicken tief in die Geschäftsprozesse und können Unternehmensziele mit Datenanalysen in Verbindung bringen. Sie entwickeln eine erste Fragestellung oder decken ein Problem auf, das anhand der erhobenen Daten gelöst werden soll. Als Schnittstelle zwischen Geschäftswelt und Technik kann er den Nutzen der Analyseergebnisse am besten einschätzen und arbeitet daher eng mit dem Data Analyst zusammen. - Die Aufgaben des Data Analyst
Der Data Analyst besitzt profunde Kenntnis über datengetriebene analytische Methoden, Data Mining-Verfahren und Techniken der Datenvisualisierung. Mit ihnen können Datensätze automatisch klassifiziert oder hinsichtlich ihrer Ähnlichkeit gruppiert werden. So kann der Data Analyst die Aussagekraft der Daten bewerten und relevante Muster und Auffälligkeiten in den Datenströmen erkennen. - Die Aufgaben des Data Manager
Der Data Manager sorgt dafür, dass die Qualität der Daten optimiert wird und sie durch Metadaten ausreichend beschrieben werden. Dazu zählt, dass sich der Data Manager einen Überblick über die Nutzungsrechte verschafft und bei sensiblen Daten weiß, wofür diese verwendet werden dürfen. - Die Aufgaben des Application Developer
Der Application Developer setzt die Plattform auf, auf der die Daten integriert und die Anwendungen entwickelt und installiert werden. Er beherrscht verschiedene Werkzeuge zur Parallelisierung und Echtzeitverarbeitung, so dass die statistischen Modelle des Data Analysten auch auf großen Datenmengen genutzt werden können. - Die Aufgaben des Security Manager
Der Security Manager sorgt dafür, dass die Zusammenführung, Anreicherung und Analyse von Daten keine Rückschlüsse auf Einzelpersonen zulässt und damit die Persönlichkeitsrechte verletzen könnte. Der Security Manager muss also den Datenschutz organisatorisch und technisch umsetzen. - Die 5 Typen von Data Scientists im Überblick
Das Schaubild zeigt noch einmal alle 5 Typen von Data Scientists und ihre Aufgaben im Überblick.