Big Data Analytics
Machine Learning bei Allianz, Boeing und GfK
Privacy, Stabilität und Qualität der Daten
In Zukunft werden Analysten laut Wirth zusätzliche Daten verwenden, um Algorithmen zu trainieren und die Modelle leistungsfähiger zu machen. "Es geht in die Richtung, im Analyseprozess mit mehreren Datenquellen zu arbeiten. Natürlich mit solchen, die auch legal genutzt werden dürfen." Data Privacy sei ein sehr wichtiges Thema rund um Machine Learning - aber auch die Stabilität und die Qualität der Daten.
Boeing will Services und interne Produktion verbessern
Der Flugzeughersteller Boeing nutzt Machine Learning, um seine Services und die interne Produktion zu verbessern, berichtete Sergey Kravchenko, President Russia and CIS von Boeing. Das Flugzeug 787 verfüge über mehr als zehntausend mit dem Internet verbundene Sensoren, die den Mechanikern am Boden schon während des Fluges melden, wenn zum Beispiel eine Lampe oder eine Pumpe ausgetauscht werden muss. So können Fluggesellschaften ihre Wartungskosten reduzieren und im Betrieb effizienter arbeiten.
Boeing arbeitet mit Big Data und Machine Learning, um den Fluggesellschaften mit den während eines Flugs gesammelten Daten zu helfen, Treibstoffkosten zu senken und die Piloten bei schlechtem Wetter zu unterstützen. Nun werden die Daten auch in der Produktion verwendet, um etwa für bestimmte Prozesse die besten Ingenieure zu finden. Daten der Personalabteilung würden genutzt, um zu verstehen, wie die Lebensdauer und die Qualität der Flugzeuge mit dem Training und der Mischung der Menschen im Produktionsteam korrelieren. Gibt es bei Prozessen, die aufwendige Nacharbeiten erfordern, Zusammenhänge mit den bereitgestellten Werkzeugen oder mit dem Team? Kravchenko will mit Big-Data-Analysen den gesamten Zyklus von Design, Produktion und Wartung verbessern.
Ein neues Big-Data-Projekt ist die Flight Training Academy, die 2016 eröffnet werden soll. Hier werden Daten der drei Flugsimulatoren gesammelt und ausgewertet, um die Gestaltung des Cockpits und das Design der Flugzeugsoftware zu verbessern. Kravchenko will seinen russischen Kunden auch anbieten, in Zukunft Daten auszutauschen und sie gemeinsam auszuwerten.
Experten müssen zusammenpassen
Die Fertigungsindustrie stehe bei der Anwendung von Machine Learning - verglichen etwa mit Telcos und dem Handel - noch am Anfang. Sie werde aber schnell von ihnen und auch von Firmen wie Amazon und Google, lernen. Wer Erfolg haben wolle, müsse die besten Flugzeug- und IT-Experten zusammenbringen. Das Problem: "Die kommen von verschiedenen Planeten."
Die Zusammenarbeit kann dennoch gelingen - wenn sich alle auf eine gemeinsame Terminologie einigen. "Die Datenexperten müssen etwas mehr von Flugzeugen und Airlines verstehen und die Flugzeugspezialisten mehr über Data Analytics lernen. Sie müssen sich die Werkzeuge teilen, sich gegenseitig vertrauen und ein gemeinsames Team aufbauen", sagt der Flugzeugbauer.
Ein weiteres Problem sei die Relevanz der Daten. "Hier muss die IndustrieIndustrie ihre riesigen Datenmengen anschauen und entscheiden, welche Daten wirklich wichtig sind, um bestimmte Probleme zu lösen. Das ist nicht einfach, dafür brauchen wir Zeit, Trial and Error, und wir müssen von anderen Branchen lernen." Die richtige Auswahl der Daten und die Interpretation der Ergebnisse seien dabei wichtiger als der Algorithmus selbst. Top-Firmen der Branche Industrie
- Big Data 2015
Zur Praxis von Big Data hat der US-Marktforscher Gartner 437 Teilnehmer seines eigenen Panels ("Gartner Research Circle") befragt. Die Ergebnisse dokumentiert das Papier "Practical challenges mount as Big Data moves to mainstream". - Adaption
Hatten 2012 noch 58 Prozent der Teilnehmer von bereits getätigten oder geplanten Investitionen gesprochen, sind es jetzt 76 Prozent. Gartner bezeichnet das als "Adaptionswelle". - Initiatoren
Gartner wollte auch wissen, wer Big Data-Initiativen anstößt. Hier zeigt sich eine deutliche Verschiebung zuungunsten der IT-Entscheider. - Ziele
In den vergangenen Jahren hat sich herauskristallisiert, welche Ziele die Unternehmen mit Big Data verbinden. An oberster Stelle steht die Kundenerfahrung (Customer Experience). Das war auch 2013 der Spitzenreiter, allerdings mit 55 Prozent der Nennungen. - Messung des ROI
24 Prozent derer, die bereits in Big Data-Lösungen investieren, messen den ROI (Return on Investment) nicht. Die anderen orientieren sich entweder an finanziellen Kennzahlen, an der Steigerung der Effizienz oder besserer Entscheidungsfindung.