Expertenwissen nicht nötig
Tools für Machine Learning im Überblick
Anbieter und Marktplätze für Machine Learning
Die meisten Anwendungsentwickler seien keine Machine Learning-Experten, so Forrester. Deshalb helfe den Anwendern der Software-Markt weiter. So seien entsprechende Funktionen in die besten Analyse-Tools für Unternehmen eingebaut. In alphabetischer Reihenfolge nennen die Analysten hier diese Anbieter: Alpine Data Labs, Alteryx, Angoss Software, DellDell, FICO, IBMIBM, KNIME.com, MicrosoftMicrosoft, OracleOracle, Predixion Software, RapidMiner, SAPSAP und SAS. Spezielle Tools würden auch von DataRobot, H2O, Skytree und anderen angeboten. Alles zu Dell auf CIO.de Alles zu IBM auf CIO.de Alles zu Microsoft auf CIO.de Alles zu Oracle auf CIO.de Alles zu SAP auf CIO.de
"Die Open Source-Community ist eine reichhaltige Quelle an Informationen und Forschungen über Machine Learning-Algorithmen und -Bibliotheken", heißt es weiter in der Studie. Unter anderem beinhalte die Open Source-Programmiersprache für Statistik R Implementierungen für Machine Learning-Algorithmen. Darüber hinaus bieten laut Forrester auch die großen Cloud-Anbieter AmazonAmazon, GoogleGoogle und Microsoft auf ihren Plattformen entsprechende Funktionen an. Analytics-Marktplätze in der Cloud, auf denen Entwickler Algorithmen anbieten und einkaufen können, gibt es ebenfalls bei diesen Platzhirschen, aber auch bei kleineren Startups wie etwa Algorithmia. Alles zu Amazon auf CIO.de Alles zu Google auf CIO.de
Hinzu kommen Angebot von Beratungshäusern und Paketanwendungen. Accenture, CI&T, Deloitte, Infosys, Mindtree und Virtusa haben Machine Learning laut Forrester in ihren großen Daten- und Analyseangeboten mit drin. Ferne gebe es auf diesem Markt spezialisierte Anbieter wie Beyond The Arc, Fractal Analytics und Think Big, A Teradata Company.
"Der Krieg der Algorithmen hat begonnen"
Wer nach Data Science-Talenten für Machine Learning-Projekte suche, könne auf Websites wie Experfy.com oder Upwork.com fündig werden, so Forrester. "Ein anderer Ansatz ist es, seine Machine Learning-Aufgabe auf Kaggle.com oder Algorithmia zu posten", erläutern Gualtieri und Curran weiter. "Dort können Data Scientist an Ihrem Problem knobeln - in der Hoffnung auf den Gewinn des Preisgeldes, das Sie für die beste Lösung ausgelobt haben."
- Die Aufgaben des Business Developer
Business Developer blicken tief in die Geschäftsprozesse und können Unternehmensziele mit Datenanalysen in Verbindung bringen. Sie entwickeln eine erste Fragestellung oder decken ein Problem auf, das anhand der erhobenen Daten gelöst werden soll. Als Schnittstelle zwischen Geschäftswelt und Technik kann er den Nutzen der Analyseergebnisse am besten einschätzen und arbeitet daher eng mit dem Data Analyst zusammen. - Die Aufgaben des Data Analyst
Der Data Analyst besitzt profunde Kenntnis über datengetriebene analytische Methoden, Data Mining-Verfahren und Techniken der Datenvisualisierung. Mit ihnen können Datensätze automatisch klassifiziert oder hinsichtlich ihrer Ähnlichkeit gruppiert werden. So kann der Data Analyst die Aussagekraft der Daten bewerten und relevante Muster und Auffälligkeiten in den Datenströmen erkennen. - Die Aufgaben des Data Manager
Der Data Manager sorgt dafür, dass die Qualität der Daten optimiert wird und sie durch Metadaten ausreichend beschrieben werden. Dazu zählt, dass sich der Data Manager einen Überblick über die Nutzungsrechte verschafft und bei sensiblen Daten weiß, wofür diese verwendet werden dürfen. - Die Aufgaben des Application Developer
Der Application Developer setzt die Plattform auf, auf der die Daten integriert und die Anwendungen entwickelt und installiert werden. Er beherrscht verschiedene Werkzeuge zur Parallelisierung und Echtzeitverarbeitung, so dass die statistischen Modelle des Data Analysten auch auf großen Datenmengen genutzt werden können. - Die Aufgaben des Security Manager
Der Security Manager sorgt dafür, dass die Zusammenführung, Anreicherung und Analyse von Daten keine Rückschlüsse auf Einzelpersonen zulässt und damit die Persönlichkeitsrechte verletzen könnte. Der Security Manager muss also den Datenschutz organisatorisch und technisch umsetzen. - Die 5 Typen von Data Scientists im Überblick
Das Schaubild zeigt noch einmal alle 5 Typen von Data Scientists und ihre Aufgaben im Überblick.
"Der Krieg der Algorithmen hat begonnen", konstatiert Forrester. Der Einsatz von Machine Learning-Apps werde sich zu einem Schlüsselfaktor im Kampf um die Gunst der Kunden entwickeln. Faktoren für die zu erwartenden schnellen Fortschritte in diesem Feld seien neben vertieften akademischen Forschungen auch Big DataBig Data als Treibstoff - schließlich sind es Daten, mit denen lernende Algorithmen gefüttert werden - und das harte Wettrennen der Internetgiganten um die besten Algorithmen. Alles zu Big Data auf CIO.de
Als normalsterblicher Entwickler werde man an das Herrschaftswissen von Google, Amazon und Co. zwar nicht herankommen. Sehr wohl könne man sich von den entstehenden Apps aber inspirieren lassen und Ideen aus ihnen ziehen. Die Nutzung werde zudem durch den wachsenden Austausch von Algorithmen etwa auf dem Azure Marketplace von Microsoft beschleunigt.
Diese Zusammenhänge werden genauer erläutert in der Forrester-Studie "A Machine Learning Primer For BT Professionals". Wie man Prognose-Modelle auf Machine Learning-Basis erstellt, demonstriert Mike Gualtieri in sechs Schritten in seinem Blog. Wer mit zerstückeltem Obst fühlt, sollte es sich nicht ansehen.