Künstliche Intelligenz as a Service
AI-Services und Machine Learning aus der Cloud
Künstliche Intelligenz(Artificial Intelligence) ist kein Marketing-Trend mehr, sondern ein wichtiger IT-Pfeiler, der in den nächsten Jahren die Wettbewerbsfähigkeit von Unternehmen bestimmt. Laut der aktuellen Crisp-Research-StudieMachine Learning im Unternehmenseinsatz befassen sich bereits 64 Prozent von gut 250 befragten IT-Entscheidern aus der DACH-Region mit entsprechenden Techniken, darunter auch maschinelles Lernen. Ein Fünftel nutzt maschinelles Lernen bereits produktiv.
Vielen Unternehmen fehlen aber das technische Know-how und die Infrastruktur, die erforderlich sind, um AI-Lösungen zu entwickeln. Die Hürden sind hoch: Die Bereitstellung von AI-Anwendungen ist mit einem großen Aufwand an Software, Hardware und Manpower verbunden. Es braucht eine ganz neue Infrastruktur und erhebliche technische Ressourcen. Riesige Datenmengen müssen miteinander in Verbindung gebracht werden. Für den Aufbau der Modelle sind AI-Spezialisten und Datenwissenschaftler notwendig. Vor allem aber ist nicht klar, ob sich der Aufwand wirklich lohnt. Denn bei allen Innovationen, die mit Künstlicher Intelligenz verbunden sind, gibt es auch viele Unwägbarkeiten.
Die Cloud senkt die Einstiegshürde für Künstliche Intelligenz
Cloud-Services lösen dieses Dilemma und senken die Einstiegshürde für Artificial Intelligence auf ein akzeptables Niveau. Ohne hohe Kosten oder neue Hardware und Software können Entwickler und Data Scientists, aber auch ganz normale Nutzer, AI-Anwendungen direkt in der Cloud umsetzen und ausführen. Die Services bieten verbreiteteMachine-LearningMachine-Learning- und andere AI-Verfahren an. Sie sind beliebig nach unten und oben skalierbar und können für erste spielerische Experimente ebenso wie für ernsthafte Business-Anwendungen eingesetzt werden. Alles zu Machine Learning auf CIO.de
Ein weiterer Vorteil: Die Cloud-Dienstleister kombinieren ihre Machine-Learning-Angebote mit komplementären Services und Werkzeugen. Zudem können auch die großzügig dimensionierten Speicherdienste der Serviceanbieter genutzt werden. Einziger Wermutstropfen: Wer sich einmal für einen Service-Provider entschieden hat, kann sich nur schwer wieder von ihm lösen.
- Microsoft Machine Learning
Azure Machine Learning ist ein vollständig verwalteter Cloud-Dienst, mit dem Anwender Predictive Analytics-Lösungen generieren und bereitstellen können. - Microsoft Cognitive Services
Die Cognitive Services von Microsoft enthalten unter anderem Dienste für Bildanalyse und Gesichtserkennung. - Amazon ML
Amazon Machine Learning unterstützt den Anwender bei der Fehleranalyse von Vorhersagemodellen. - Amazon Bot
Mit Amazon Lex können Chatbots beispielsweise für Verbraucheranfragen erstellt werden. - Google API
Über APIs lassen sich Google AI-Services in eigene Anwendungen integrieren. - Google Tensorflow
Das von Google stammende Open-Source Framework Tensorflow ist die Basis von Cloud ML. - IBM Bluemix
IBM bietet auf der Cloud-Plattform Bluemix zahlreiche Watson-basierte AI-Anwendungen. - IBM ML
IBM Machine Learning ermöglicht die Entwicklung und den Einsatz selbstlernender Analysemodelle in der Private Cloud. - HPE Haven
Mithilfe der Gesichtserkennungs-API von HPE können Entwickler in Fotos gefundene Daten importieren, extrahieren und analysieren. - Salesforce Einstein
Salesforce Einstein: Predictive Content liefert Kunden auf Basis von maschinellem Lernen eine individuelle Empfehlung für das beste Produkt.
Artificial Intelligence - was gibt es bei den Cloud-Providern?
AmazonAmazon Web Services, GoogleGoogle Cloud Plattform, IBMIBM BlueMix und MicrosoftMicrosoftAzure sind momentan mit ihren AI-Cloud-Plattformen die Platzhirsche. Schwerpunkt der meisten Angebote ist Machine Learning as a Service. Das ist nicht weiter erstaunlich, weil maschinelles Lernen methodisch und technisch das am weitesten fortgeschrittene AI-Gebiet ist. Alles zu Amazon auf CIO.de Alles zu Google auf CIO.de Alles zu IBM auf CIO.de Alles zu Microsoft auf CIO.de
Mit dem Machine-Learning-Verfahren Deep Learning steht die derzeit erfolgreichste Implementierung eines künstlichen neuronalen Netzes zur Verfügung. Sie lässt sich sehr gut praktisch anwenden, wenn es gilt, Daten in Wissen zu verwandeln und Vorhersagemodelle etwa für Predictive Analytics, Ausfallrisiken oder Kundenverhalten zu entwickeln.
Andere AI-Anwendungen wie Natural Language Processing sind bei den Web-Services und in den Unternehmen noch unterrepräsentiert. Dabei wären Sprachanalyse und Sprachservices mindestens ebenso nützlich wie Machine Learning. Chat-Bots könnten zum Beispiel einfache Kundenanfragen in natürlicher Sprache beantworten, die der Kunde kaum von einem menschlichen Assistenten unterscheiden kann.
Fortgeschrittene Modelle verstehen schon heute die Absichten von Kunden und können Dialoge erzeugen, die nicht von natürlichen Gesprächen zu diffenzieren sind. Wird es schwierig, leitet der Bot die Anfrage an einen menschlichen Agenten weiter. Solche AI-gestützten Sprachsysteme könnten Unternehmen sehr flexibel einsetzen und damit den den Prozentsatz der Fragen erhöhen, die sie sehr schnell beantworten können.