Data Scientists
Die Jäger wertvoller Daten
Außerdem müssen ganz praktische Probleme wie die Knappheit an geeigneten Big-Data-Spezialisten oder die Frage nach den geeigneten technischen Voraussetzungen gelöst werden, um die Möglichkeiten von Big Data voll auszuschöpfen", sagt Olaf Riedel, er ist Partner bei Ernst & Jung. Die Beratungsgesellschaft hat eine Studie zum Thema erstellt, mit dem Ergebnis: indem Daten professionell genutzt werden, lassen sich Umsätze deutlich steigern. Data Scientist machen Unternehmen erfolgreicher.
"Big Data ist ein junges Berufsfeld und Data Scientists meist Quereinsteiger aus Informatik, Mathematik und Statistik", sagt Marc Beierschoder, Verantwortlicher für Analytics beim IT-Dienstleister Accenture in Kronberg im Taunus. Data Scientist brauchen nach seinen Angaben ein ausgeprägtes mathematisch-analytisches Talent, gute Kenntnisse von statistischen Methoden, ein tiefes Verständnis für digitale Methoden und sie müssen Zusammenhänge in Daten identifizieren können. "Nur dann können sie Aussagen treffen, die dem Unternehmen dienen." Das können höhere Einnahmen, effizientere Abläufe oder mehr Kundentreue sein.
- Big Data: Neue Berufsbilder
In den teilweise euphorischen Einschätzungen von Markforschern und IT-Unternehmen ist immer wieder die Rede von neuen Berufsbildern, die Big Data mit sich bringen soll. Dazu zählen unter anderem folgende Tätigkeiten: - Data Scientist
Er legt fest, welche Analyseformen sich am besten dazu eignen, um die gewünschten Erkenntnisse zu erzielen und welche Rohdaten dafür erforderlich sind. Solche Fachleute benötigen solide Kenntnisse in Bereichen wie Statistik und Mathematik. Hinzu kommen Fachkenntnisse über die Branche, in der ein Unternehmen beziehungsweise tätig ist und über IT-Technologien wie Datenbanken, Netzwerktechniken, Programmierung und Business Intelligence-Applikationen. Ebenso gefordert sind Verhandlungsgeschick und emotionale Kompetenz, wenn es um die Zusammenarbeit mit anderen Abteilungen geht. - Data Artist oder Data Visualizer
Sie sind die "Künstler" unter den Big-Data-Experten. Ihre Hauptaufgabe besteht darin, die Auswertungen so zu präsentieren, dass sie für Business-Verantwortliche verständlich sind. Die Fachleute setzen zu diesem Zweck Daten in Grafiken und Diagramme um. - Data Architect
Sie erstellen Datenmodelle und legen fest, wann welche Analyse-Tools Verwendung finden und welche Datenquellen genutzt werden sollen. Auch sie benötigen ein umfassendes Know-how auf Gebieten wie Datenbanken, Datenanalyse und Business Intelligence. - Daten-Ingenieur
Diese Aufgabe ist stark auf die IT-Infrastruktur ausgerichtet. Der Dateningenieur ist das Big-Data-Analysesystem zuständig, also die Hard- und Software sowie Netzwerkkomponenten, die für das Sammeln und Auswerten von Daten benötigt werden. Eine vergleichbare Funktion haben System- und Netzwerkverwalter im IT-Bereich. - Information Broker
Er kann mehrere Rollen spielen, etwa die eines Datenhändlers, der Kunden Informationen zur Verfügung stellt, oder die eines Inhouse-Experten, der Datenbestände von unterschiedlichen Quellen innerhalb und außerhalb des Unternehmens beschafft. Außerdem soll er Ideen entwickeln, wie sich diese Daten nutzbringend verwenden lassen. - Data Change Agents
Diese Fachleute haben eine eher "politische" Funktion. Sie sollen bestehende Prozesse im Unternehmen analysieren und anpassen, sodass sie mit Big-Data-Initiativen kompatibel sind. Nur dann lässt sich aus solchen Projekten der größtmögliche Nutzen ziehen. Wichtig sind daher ausgeprägte Kommunikationsfähigkeiten, Verständnis für Unternehmensprozesse sowie Kenntnisse im Bereich Qualitätssicherung und Qualitätsmanagement (Six Sigma, ISO 9000).
Entscheidend ist die Datenaufbereitung
Sind unsere Kunden der Marke treu? Will ein Unternehmen hierauf eine Antwort, kann Accenture sie liefern. Ein Projektteam arbeitet zunächst konzeptionell und geht den Fragen nach: welche Daten liegen vor, welche Aussagen können wir treffen und worin liegt der Wert fürs Unternehmen? Das Team bediente sich aus verschiedenen Quellen wie den Systemen fürs Kundenbeziehungsmanagement, Unternehmenssteuerung und externen Quellen wie Social Media.
Je mehr unterschiedliche Daten zur Verfügung stehen, umso genauer wird das Ergebnis. Doch Quantität führt nicht automatisch zu einer höheren Qualität der Analysen. Das Brauchbare muss herausgefiltert werden. Das macht Analysesoftware nach genauen Vorgaben. Entscheidend für die Qualität der Ergebnisse ist die Datenaufbereitung. Eine gute Qualität liefern vollständige, richtige und konsistente Daten.
Bei der AllianzAllianz liegen Datenkomprimierung und Analyse in einer Hand. Mihael Ankerst, 42, leitet das Referat Kundendaten und Statistik. "Wir verdichten Kundendaten entlang von Geschäftsvorfällen, analysieren diese und stellen darauf aufbauend Überlegungen zum Bedarf unserer Kunden an." Ankerst hat Informatik studiert und in dieser Disziplin promoviert. Sein Studienschwerpunkt war Data-Mining, das ist die Analyse großer Datenmengen mit dem Ziel, Zusammenhänge zu erkennen. Darüber hat er seine Diplomarbeit geschrieben und promoviert. Anschließend hat er vier Jahre in den USA als Datenanalyst gearbeitet. Top-500-Firmenprofil für Allianz SE