KI-Historie

Die Geschichte der künstlichen Intelligenz

Tom Ball schreibt freiberuflich unter anderem für IDG Connect.
Daniel Fejzo ist freier Mitarbeiter der Redaktion COMPUTERWOCHE.
Wir stellen Ihnen die wichtigsten Meilensteine der KI-Geschichte vor – von den ersten Visionen der Antike, über Turings bahnbrechende Arbeit bis hin zu den Low-Code- und No-Code-Plattformen von heute - und morgen.
Alan Turing gilt als einer der einflussreichsten Informatiker und zeichnet maßgeblich für das, was wir heute unter künstlicher Intelligenz verstehen, verantwortlich.
Alan Turing gilt als einer der einflussreichsten Informatiker und zeichnet maßgeblich für das, was wir heute unter künstlicher Intelligenz verstehen, verantwortlich.
Foto: Lenscap Photography - shutterstock.com

Das Konzept der künstlichen Intelligenz (KI)künstlichen Intelligenz (KI) beschäftigt Menschen schon seit Hunderten, wenn nicht sogar Tausenden von Jahren. Die gedankliche Arbeit rund um das Thema KI wurzelt in der Faszination für die eigene, menschliche Spezies und ihren einzigartigen Fähigkeiten. Dabei prägten Literatur, Kunst und das Kino im Laufe der Jahre die Vorstellungen von der Leistungsfähigkeit der künstlichen Intelligenz maßgeblich - sowohl im positiven als auch im negativen Sinn. Alles zu Künstliche Intelligenz auf CIO.de

Konkrete Beispiele für den KI-Einsatz finden sich mittlerweile im Verbraucher- wie auch im Unternehmensumfeld, wobei die aktuellen Anwendungsfälle in der Industrie zu den spannendsten gehören. Mit Blick auf eine Reihe aktueller KI-Innovationen, darunter auch ChatGPT, ist es also höchste Zeit, die wichtigen historischen Meilensteine der Technologie zu erkunden.

Von der Antike ins 20. Jahrhundert

Einige verorten die erste Erwähnung von KI (im modernen Sinn) in Jonathan Swifts Roman "Gullivers Reisen" aus dem Jahr 1726. In der Geschichte kommt eine computerähnliche Maschine namens "Engine" vor, die zur Erweiterung des Wissens und der Verbesserung mechanischer Abläufe eingesetzt wird. Das Konzept von Automaten beziehungsweise Robotern hat seine Wurzeln wiederum bereits in der Antike. Im europäischen Raum sind in diesem Zusammenhang die griechischen Dichter Homer und Hesiod zu nennen. Hesiod etwa erzählt von Talos, dem bronzenen Riesen, der vom Schmiedegott Hephaistos geschaffen wurde. Auch in der antiken chinesischen Mythologie und Folklore finden sich KI-Anklänge: Hier ist die Rede von realistisch anmutenden Wachhunden, die eigentlich hölzerne Maschinen sind.

Im 20. Jahrhundert nimmt die KI-Faszination dann Fahrt auf. Einerseits durch fiktionale Figuren wie den Zinnmann im "Zauberer von Oz", andererseits durch die realen Fortschritte auf theoretischer Ebene - beispielsweise die Veröffentlichung von Bertrand Russells und Alfred N. Witheheads "Principia Mathematica" im Jahr 1913 oder den von Leonardo Torres Qeuvedo im Jahr 1915 konstruierten Schachautomaten.

Getrieben von den zunehmend populärer werdenden Ideen von Robotern und Automatisierung und ausgerüstet mit den mathematischen Grundlagen macht sich schließlich Alan Turing daran, das Potenzial der künstlichen Intelligenz zu erkunden.

"Können Maschinen denken?"

Turings Untersuchungen gipfeln in seinem berühmten Aufsatz "Computing Machinery and Intelligence" (PDF) von 1950. Dort beschreibt er nicht nur, wie intelligente Maschinen gebaut werden könnten, sondern auch, wie sich ihre Intelligenz testen lässt (Turing-Test). Ausgehend von der Frage "Können Maschinen denken?" werden klare Grenzen für die Begriffe "Maschinen" und "Denken" festgelegt. Darüber hinaus diskutiert Turing das Konzept digitaler Computer, ihre Universalität sowie die theologischen und mathematischen Einwände gegen die Denkfähigkeit von Maschinen. Damit legt er den Grundstein für die Entwicklung der künstlichen Intelligenz, wie wir sie heute kennen.

Der bahnbrechende Aufsatz ist seiner Zeit weit voraus, da Computer damals Befehle nur ausführen, aber nicht speichern können. Ein weiteres Problem sind die damals enormen Hardware-Kosten: Einen einzigen Rechner zu mieten, kostet rund eine Viertelmillion Dollar - pro Monat. Turing hat zweifelsohne die Weichen gestellt, aber es müssen noch einige weitere Meilensteine erreicht werden, bevor es zu substanziellen Fortschritten bei der künstlichen Intelligenz kommen kann.

Im Jahr 1956 nutzen der Informatiker Allen Newell, der Programmierer Cliff Shaw und der Wirtschaftswissenschaftler Herbert Simon das KI Proof-of-Concept. Gemeinsam entwerfen sie das Programm "The Logic Theorist", das von der Research and Development Corporation (RAND) finanziert wird. Das Programm soll den menschlichen Denkprozess replizieren und der Startschuss für die rasante KI-Entwicklung der kommenden Jahre sein.

DENDRAL, Kubrick, Mikroprozessoren

Die nächste große Entwicklungshürde nimmt KI mit der Einführung des auf Molekularchemie spezialisierten Expertensystem DENDRAL im Jahr 1965. Das System wird am MIT entwickelt und basiert auf einer "Inferenzmaschine", die auf die logische Nachahmung menschlicher Denkmuster abzielt. Das System kann Dateneingaben verarbeiten und ausgefeilte Antworten geben. Das auf DENDRAL-Basis entstandene MYCIN-System, das ab 1972 an der Stanford University eingesetzt wird, ist ein ebenso bedeutsames Beispiel.

Etwa zur selben Zeit werden im Kino die potenziellen Schattenseiten der KI in den Fokus gerückt - zum Beispiel mit Stanley Kubricks "2001: Odyssee im Weltraum" im Jahr 1968. Der Film stellt besonders ethische Fragen im Hinblick auf KI ins Rampenlicht. Die Diskussion über die Regulation von KI-Systemen dauert bis heute an. Der wichtigste Meilenstein dieser Ära wird 1970 mit dem Aufkommen der ersten Mikroprozessoren erreicht. Dies gibt der Entwicklung der Technologie neuen Schwung und beschleunigt sie auf breiter Ebene.

Die Kommerzialisierung beginnt

In den 1980ern kommt es zur ersten kommerziellen Anwendung von künstlicher Intelligenz. Die Digital Equipment Corporation nutzt das Expertensystem "RI", um neue Computersysteme zu konfigurieren. Bereits im Jahr 1986 realisiert das System jährliche Einsparungen in Höhe von 40 Millionen Dollar. Hier deutet sich bereits an, welches Potenzial KI für Unternehmen birgt.

An der Robotik-Front wird 1984 mit der Entwicklung von RB5X, einem zylindrischen Roboter mit Organen, Nerven und einem transparenten "Kopf"ein Meilenstein erreicht. Die selbstlernende Software ermöglicht RB5X die Vorhersage künftiger Ereignisse auf Grundlage historischer Daten.

Im Jahr 1997 beobachtet die Weltöffentlichkeit, wie das IBM-System "Deep Blue" den Schachweltmeister Gary Kasparov besiegt. Das sorgte zwar für Erstaunen, bringt aber nicht die bahnbrechenden Konsequenzen mit sich, die manch einer erwartet hat.

Kombinierter Technologien-Einsatz

Der KI-Fortschritt, den die Welt in den 2010er Jahren erlebt, fußt auf einem tragfähigen Fundament, nämlich der Kombination aus massiven Datenmengen und einer noch nie dagewesenen Rechenpower. Das ermöglicht es, Algorithmen zur Klassifizierung und Erkennung von Mustern zu trainieren. Ein Prozess, der durch hocheffiziente Prozessoren und Grafikkarten wesentlich beschleunigt wird. Die Verfügbarkeit dieser Komponenten trägt außerdem entscheidend dazu bei, die Kosten für die Entwicklung künstlicher Intelligenz und damit die Zugangsbarrieren zu senken.

Diese Rahmenbedingungen begünstigen viele weitere Innovationen im Bereich KI: Im Jahr 2011 eifert IBMs "Watson" "Deep Blue" nach und besiegt gleich zwei menschliche Champions in der Spielshow Jeopardy. Im darauffolgenden Jahr kann Googles "X-System" einen weiteren KI-Meilenstein erreichen, indem es Katzen in einem Video erkennt. Im Jahr 2016 muss sich schließlich der Go-Europameister Googles "AlphaGO" geschlagen geben.

Die 2010er Jahre sind für die künstliche Intelligenz nicht nur deswegen bedeutsam, weil sie erstmals menschliche Fähigkeiten übertreffen kann, sondern auch weil andere technologische Fortschritte diese Errungenschaften erst ermöglichen. In unserem Alltag manifestiert sich die Entwicklung durch Innovationen wie Siri und Alexa. Im Unternehmensumfeld hingegen in Form von Automatisierung, Deep Learning und dem Internet of Things.

Quo vadis, Unternehmens-KI?

Laut einer Studie von PWC aus dem Jahr 2020 profitierten zu dieser Zeit bereits 86 Prozent der befragten Unternehmen vom Einsatz künstlicher Intelligenz - in Form einer optimierten Customer Experience. 25 Prozent der Unternehmen, die auf einen breiten KI-Einsatz setzten, erwarteten sich davon für das Jahr 2021 eine Umsatzsteigerung. Die positive Wahrnehmung von KI in der Wirtschaft ist sicherlich auch auf die Erfahrungen in der Pandemie zurückzuführen, die neue Use Cases - zum Beispiel in der Personaleinsatzplanung und der Simulationsmodellierung - hervorgebracht haben.

2020 kristallisierten sich einige KI-Trends heraus, die sich auch über die folgenden Jahre hielten - etwa Machine Learning Operations (MLOps). MLOps kann als Sammelbegriff definiert werden, der verschiedene Innovationen bei der Integration von Machine Learning in Produktivumgebungen umfasst - beispielsweise, wenn es um Workflows, Taffic-Muster und Bestandsmanagement geht. Unternehmen werden sich künftig vermehrt auf diese Art der KI-Anwendung fokussieren, angespornt von den zu erzielenden Vorteilen durch KI und Automatisierung, die sich während der Pandemie manifestiert haben.

Ein weiterer Top-Trend in Sachen künstlicher Intelligenz wurden Low-Code- und No-Code-Plattformen, die die Nutzung produktionsreifer KI-Anwendungen ohne tiefgreifende Programmierkenntnisse ermöglichen. Fortschritte in diesem Bereich könnten der Schlüssel zur Überwindung des Fachkräftemangels sein, der Unternehmen immer noch in vielen Fällen vom erfolgreichen Einsatz von KI und Automatisierung trennt.

Eine weitere Innovations-Ära wird durch Technologien wie IoT, 5G und Edge Computing getrieben, die entscheidend von den Fortschritten auf dem Gebiet der künstlichen Intelligenz profitieren. Das Zusammenspiel dieser Technologien wird Unternehmen in die Lage versetzen, ihre eigenen KI-Systeme schneller als bisher zu trainieren und zu nutzen, was wiederum gewaltige Benefits verspricht. Auch Quantum Computing wird einen großen Einfluss auf die Zukunft der künstlichen Intelligenz nehmen. Schließlich stellt die Technologie Verarbeitungsgeschwindigkeiten in Aussicht, die es ermöglichen könnten, eine KI-Plattform im Handumdrehen zu trainieren.

Dieser Text basiert auf einem Artikel von IDG Connect.

ChatGPT und generative KI - eine neue Ära beginnt

Im November 2022 präsentierte das kalifornische Unternehmen OpenAI den Chatbot ChatGPT und läutete damit einen wahren Hype rund um generative KI ein. Bei ChatGPT (Generative Pre-trained Transformer) handelt es sich um ein KI-basiertes Sprachmodell, das auf natürliche Sprache spezialisiert ist.

ChatGPT wurde mit einer großen Menge an Textdaten trainiert, die vor allem aus dem Internet gesammelt wurden. Das System kann eine Vielzahl von Aufgaben der natürlichen Sprachverarbeitung ausführen. Dazu gehören etwa Textgenerierung, Textzusammenfassungen, Textklassifizierung sowie Frage-Antwort-Systeme. ChatGPT lässt sich in zahlreichen Branchen und Anwendungsfeldern einsetzen, beispielsweise im Kundenservice, im Marketing, in der Bildung und in der Finanzbranche.

Nachdem OpenAI das System öffentlich zugänglich gemacht hatte, meldeten sich innerhalb von fünf Tagen bereits eine Million Nutzer an. Im Januar 2023 verzeichnete OpenAI schon mehr als 100 Millionen Nutzer. In der Folge machte ChatGPT immer wieder Schlagzeilen. Das System schrieb selbständig wissenschaftliche Arbeiten, erledigte Hausaufgaben für Schüler, entwickelte Code in diversen Programmiersprachen und bewältigte zum Teil sogar Abiturprüfungen.

Schon bald wurden kritische Stimmen laut, die vor Missbrauch warnten und mehr Transparenz forderten. In zahlreichen Anwendungsfällen lieferte ChatGPT zudem auch falsche oder irreführende Ergebnisse.

Transformer-Modell und Attention Mechanismus

ChatGPT basiert auf dem sogenannten "Transformer-Modell", das die Technologie des "Attention Mechanism" nutzt. Mit diesem Mechanismus kann ein Modell auf bestimmte Teile des Eingabe-Textes achten und diese berücksichtigen, wenn es den Ausgabe-Text generiert. Beim Lernen wird das Modell mit einer großen Menge an Textdaten trainiert und versucht dabei, die Muster und Zusammenhänge in diesen Daten zu erkennen.

Wer steht hinter ChatGPT?

Entwickelt wurde ChatGPT vom US-amerikanischen Tech-Unternehmen OpenAI, das 2015 von Elon Musk, Sam Altman, Greg Brockman, Ilya Sutskever und Wojciech Zaremba gegründet wurde. An OpenAI sind mittlerweile eine Reihe von Investoren beteiligt, allen voran Microsoft und weitere bekannte Kapitalgeber wie Peter Thiel, khosla Ventures und Andreessen Horowitz.

Im Februar 2023 brachte OpenAI in den USA eine kostenpflichtige Professional-Version von ChatGPT auf den Markt. Der Preis lag zu Beginn bei 23,80 Dollar (22 Euro) pro Monat. Im März 2023 präsentierte OpenAI die nächste Version ChatGPT-4, die im Vergleich zur Version 3 noch einmal erheblich verbessert wurde. OpenAI verabschiedete sich damit noch mehr vom ursprünglich verfolgten Freeware-Ansatz, der eine kostenfreie Nutzung erlaubte.

Microsoft investiert zehn Milliarden in ChatGPT

Ein Meilenstein in der Geschichte von ChatGPT kam im Januar 2023: Microsoft teilte mit, seine schon bestehenden Investitionen in OpenAI um zehn Milliarden Dollar aufzustocken. Im Rahmen der Partnerschaft integrierte der Softwarekonzern ChatGPT unter anderem in seine Suchmaschine Bing und will auch viele seiner Office-Produkte damit ausrüsten.

Für Microsofts Konkurrenten wie Google stellte ChatGPT von Anfang an eine Bedrohung dar. Bereits im Februar 2023 kündigte Google als Reaktion auf den Hype um ChatGPT eine neue KI-Initiative an. Diese besteht aus drei Teilen: einem Chatbot mit dem Namen Bard, neuen KI-Funktionen in der Google-Suche sowie diversen Programmier-Schnittstellen (APIs), die sich zum Entwickeln von KI-Anwendungen nutzen lassen. (wh)

Zur Startseite