Datenanalyse
Analytics und Big Data im Praxis-Check
Katastrophenwarnung: Wertvolle Sekunden gewinnen mit Datenanalyse
Im Frühjahr 2014 startete Kanada das Smart Oceans BC Projekt vor seiner Westküste. Es verbindet Daten der Sensorstationen des seit 25 Jahren bestehenden Ocean Networks Canada mit neuen Datenquellen und setzt auf leistungsstarke, rechnerbasierte Analyse. Im Zuge der verbesserten Analysemethoden wird das bestehende Netzwerk auch um 100 kleinere Sensoren und zusätzliche Radaranlagen erweitert.
Auch tellergroße landgestützte Sensoren sind geplant, um Erdstöße besser zu erfassen. Sie sind im Gegensatz zu den Titanstahl-verkappten, kabelgebundenen Unterwassersensoren in leicht zugänglichen Gebieten installiert und haben einen eigenen Internetanschluss.
Der größte Vorteil des Erdbebenfrühwarnung liegt darin, wertvolle Sekunden zur Vorbereitung herauszuschinden: die Erdstöße sind wesentlich langsamer als die Datenübertragung über ein Glasfasernetz, und betroffene Gebiete können etwa Züge verlangsamen, Gasleitungen sperren, Computersysteme herunter fahren oder chirurgische Eingriffe unterbrechen.
Mit Hilfe der Auswertung von Daten aus Meeressensoren und weiteren Quellen zu Strömungen, Seegang, Verkehr und Wasserqualität, setzen die Forscher die Datenanalyse auch zur besseren Vorhersage von Tsunamis ein. Die Daten zum Schiffsverkehr und zur Wetter-Entwicklung könnten auch dazu beitragen, die Planung von Schiffsrouten vor der Küste Kanadas zu verbessern. Ein weiterer Vorteil liegt in der größeren Sicherheit vor Havarien etwa von Öltankern.
- Big Data 2015
Zur Praxis von Big Data hat der US-Marktforscher Gartner 437 Teilnehmer seines eigenen Panels ("Gartner Research Circle") befragt. Die Ergebnisse dokumentiert das Papier "Practical challenges mount as Big Data moves to mainstream". - Adaption
Hatten 2012 noch 58 Prozent der Teilnehmer von bereits getätigten oder geplanten Investitionen gesprochen, sind es jetzt 76 Prozent. Gartner bezeichnet das als "Adaptionswelle". - Initiatoren
Gartner wollte auch wissen, wer Big Data-Initiativen anstößt. Hier zeigt sich eine deutliche Verschiebung zuungunsten der IT-Entscheider. - Ziele
In den vergangenen Jahren hat sich herauskristallisiert, welche Ziele die Unternehmen mit Big Data verbinden. An oberster Stelle steht die Kundenerfahrung (Customer Experience). Das war auch 2013 der Spitzenreiter, allerdings mit 55 Prozent der Nennungen. - Messung des ROI
24 Prozent derer, die bereits in Big Data-Lösungen investieren, messen den ROI (Return on Investment) nicht. Die anderen orientieren sich entweder an finanziellen Kennzahlen, an der Steigerung der Effizienz oder besserer Entscheidungsfindung.
Big Data Analytics: Die Regierungen sind gefordert
In der rasch voranschreitenden Evolution der Datenanalyse spielen die Regierungen eine wichtige Rolle. Gesetzgeber und Aufsichtsbehörden müssen klarere Regeln zum Schutz der Privatsphäre der Anwender schaffen sowie zum freien grenzüberschreitenden Datenfluss. Sie müssen außerdem in stark nachgefragte IT-Fachkräfte investieren, um Marktchancen zu eröffnen und Unternehmen das beste Umfeld für Innovation zu bieten. Denn Daten eröffnen schier unbegrenzte Möglichkeiten. Diesen Wissens-Pool zu erschließen und zu verwerten, wird die größte Aufgabe einer rasch wachsenden Innovationswirtschaft sein, um letztlich das alltägliche Leben Aller weiter zu verbessern.